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Abstract. A general parametrization of the B+ → π+K0 and B0
d → π−K+ decay amplitudes is presented.

It relies only on the isospin symmetry of strong interactions and the phase structure of the Standard Model
and involves no approximations. In particular, this parametrization takes into account both rescattering
and electroweak penguin effects, which limit the theoretical accuracy of bounds on γ arising from the
combined B± → π±K, Bd → π∓K± branching ratios. Generalized bounds making also use of the CP
asymmetry in the latter decay are derived, and their sensitivity to possible rescattering and electroweak
penguin effects is investigated. It is pointed out that experimental data on B± → K±K allow us to include
rescattering processes in these bounds completely, and an improved theoretical treatment of electroweak
penguins is presented. It is argued that rescattering effects may enhance the combined B± → K±K
branching ratio by a factor of O(10) to the 10−5 level, and that they may be responsible for the small
present central value of the ratio of the combined Bd → π∓K± and B± → π±K branching ratios, which
has recently been reported by the CLEO collaboration and, if confirmed, would exclude values of γ within
a large region around 90◦.

1 Introduction

The decays B+ → π+K0, B0
d → π−K+ and their charge-

conjugates offer a way [1]–[4] to obtain experimental infor-
mation on the angle γ of the usual, non-squashed, unitar-
ity triangle [5] of the Cabibbo–Kobayashi–Maskawa ma-
trix (CKM matrix) [6] at future B factories. Recently,
these decays have been observed by the CLEO collabora-
tion [7] and experimental data are now starting to become
available. So far only results for the combined branching
ratios:

BR(B± → π±K)

≡ 1
2

[
BR(B+ → π+K0) + BR(B− → π−K0)

]
(1)

BR(Bd → π∓K±)

≡ 1
2

[
BR(B0

d → π−K+) + BR(B0
d → π+K−)

]
(2)

have been published, with large experimental uncertain-
ties [7]:

BR(B± → π±K) =
(
2.3+1.1

−1.0 ± 0.3 ± 0.2
)× 10−5 (3)

BR(Bd → π∓K±) =
(
1.5+0.5

−0.4 ± 0.1 ± 0.1
)× 10−5 . (4)

Consequently, it is not yet possible to determine γ as was
proposed in [1,2]. However, as was pointed out in [8], these
combined branching ratios imply bounds on γ, which are

of the form

0◦ ≤ γ ≤ γ0 ∨ 180◦ − γ0 ≤ γ ≤ 180◦, (5)

and are hence complementary to the presently allowed
range 41◦ ∼< γ ∼< 134◦ arising from the usual fits of the
unitarity triangle [9]. If the ratio

R ≡ BR(Bd → π∓K±)
BR(B± → π±K)

(6)

is found to be smaller than 1 – its present experimental
range is 0.65 ± 0.40, so that this may indeed be the case
– the quantity γ0 takes a maximal value

γmax
0 = arccos(

√
1 −R) , (7)

which depends only on R. In the future, these bounds may
play an important role to constrain the unitarity triangle
(for a detailed study, see for instance [10]).

In addition to the general phase structure of the Stan-
dard Model of electroweak interactions, the following three
assumptions have to be made in order to arrive at (7):

i) Isospin symmetry of strong interations can be used to
derive relations between the QCD penguin amplitudes
contributing to B+ → π+K0 and B0

d → π−K+.
ii) There is no non-trivial CP-violating weak phase pres-

ent in the B+ → π+K0 decay amplitude.
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iii) Electroweak penguins play a negligible role in B+ →
π+K0 and B0

d → π−K+.

While the use of the SU(2) isospin symmetry is certainly
on solid theoretical ground – although special care has
to be taken when applying it to penguin topologies with
internal up quarks – the other two assumptions are signif-
icantly less reliable and deserve further investigation.

As far as point (ii) is concerned, long-distance final-
state interaction effects [11], which are related, for in-
stance, to rescattering processes such as B+ → {π0K+}
→ π+K0, may in principle affect this assumption about
the B+ → π+K0 decay amplitude [12]–[17]. An impli-
cation of such effects may be sizeable CP violation as
large as O(10%) in B+ → π+K0 [16], while estimates
based on simple quark-level calculations following the ap-
proach proposed by Bander, Silverman and Soni [18] typ-
ically yield CP asymmetries of O(1%) [19]. Reliable cal-
culations of such rescattering effects are, however, very
challenging and require theoretical insights into the dy-
namics of strong interactions, which unfortunately are not
available at present. In this paper we will therefore not
make another attempt to “calculate” these effects. We
rather include them in a completely general way in the
formulae discussed in Sects. 2 and 3, and advocate the
use of experimental data on the decays B+ → π+K0

and B+ → K+K0 to deal with final-state interactions.
Employing SU(3) flavour symmetry, these channels allow
us to control the rescattering effects in the bounds on γ
completely. Interestingly, if there are indeed large contri-
butions from such rescattering processes, the combined
B± → K±K branching ratio may well be enhanced from
its “short-distance” value O(10−6) to the 10−5 level, so
that an experimental study of this mode appears to be
feasible at future B factories.

The role of electroweak penguins in non-leptonic B de-
cays, and strategies to extract CKM phases, has been dis-
cussed extensively in the literature during the recent years
[20]. In the decays B+ → π+K0 and B0

d → π−K+, elec-
troweak penguins contribute only in “colour-suppressed”
form; model calculations using “factorization” to estimate
the relevant hadronic matrix elements give contributions
at the 1% level, and hence support point (iii) listed above
[8]. Such a treatment of the electroweak penguins may,
however, underestimate their importance [2,15,21], and it
is therefore highly desirable to find more advanced meth-
ods to deal with these topologies. Similarly to our treat-
ment of the rescattering effects, we also include the elec-
troweak penguins in a completely general way in our for-
mulae without making any approximation. As we will see
below, in the case of the electroweak penguins it is, how-
ever, possible to improve their theoretical description con-
siderably by using the relevant four-quark operators and
the isospin symmetry of strong interactions to relate the
corresponding hadronic matrix elements.

The outline of this paper is as follows: in Sect. 2 we in-
troduce a parametrization of the B+ → π+K0 and B0

d →
π−K+ decay amplitudes in terms of “physical” quantities,
relying only on the phase structure of the Standard Model
and the isospin symmetry of strong interactions. In par-

ticular, the usual terminology of “tree” and QCD penguin
amplitudes to describe these decays is clarified. In Sect. 3
we discuss strategies to constrain and determine the CKM
angle γ by using B± → π±K and Bd → π∓K± decays.
The bounds on γ derived in [8], making use of only the
combined branching ratios (1) and (2), are generalized by
taking into account in addition the CP-violating asym-
metry arising in Bd → π∓K±, and transparent formu-
lae including both final-state interactions and electroweak
penguins in a completely general way are presented. In
Sect. 4 we investigate the role of rescattering processes in
these strategies and point out that the modes B± → π±K
and B± → K±K allow us to include these effects in the
bounds on γ completely by using the SU(3) flavour sym-
metry. A detailed analysis of the electroweak penguin ef-
fects is performed in Sect. 5, where also an improved theo-
retical treatment of the corresponding contributions and a
first step to constrain them experimentally with the help
of the decay B+ → π+π0 are presented. The combined ef-
fects of final-state interactions and electroweak penguins
are discussed in Sect. 6 by considering a few selected ex-
amples, and the conclusions are summarized in Sect. 7.

2 General description of B± → π±K
and Bd → π∓K± within the Standard Model

The subject of this section is a general description of the
decays B± → π±K and Bd → π∓K± within the frame-
work of the Standard Model. After a parametrization of
their decay amplitudes, expressions for the observables
provided by these modes are given, taking into account
both rescattering and electroweak penguin effects.

2.1 The B+ → π+K0

and B0
d → π−K+ decay amplitudes

Let us have a closer look at the charged B decay B+ →
π+K0 first. Its transition amplitude can be written as

A(B+ → π+K0) = λ(s)
u (Pu + Pu

ew + A)

+λ(s)
c (Pc + P c

ew) + λ
(s)
t (Pt + P t

ew) ,(8)

where Pq and P q
ew denote contributions from QCD and

electroweak penguin topologies with internal q quarks (q ∈
{u, c, t}), respectively; A is related to annihilation topolo-
gies, and

λ(s)
q ≡ VqsV

∗
qb (9)

are the usual CKM factors. Making use of the unitarity
of the CKM matrix and applying the Wolfenstein para-
metrization [22] yields

A(B+ → π+K0) = −
(

1 − λ2

2

)
λ2A

[
1 + ρeiθeiγ]Ptc ,

(10)
where

Ptc ≡ |Ptc| eiδtc = (Pt − Pc) + (P t
ew − P c

ew) (11)
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and

ρeiθ =
λ2Rb

1 − λ2/2

[
1 −

(Puc + A
Ptc

)]
(12)

with
Puc = (Pu − Pc) + (Pu

ew − P c
ew) . (13)

In these expressions, δtc and θ denote CP-conserving strong
phases, and the present status of the relevant CKM factors
is given by

λ ≡ |Vus| = 0.22, A ≡ 1
λ2 |Vcb| = 0.81 ± 0.06 ,

Rb ≡ 1
λ

∣∣∣∣Vub

Vcb

∣∣∣∣ = 0.36 ± 0.08 . (14)

On the other hand, the decay amplitude of B0
d →

π−K+ takes the form

A(B0
d → π−K+) = −

[
λ(s)

u (P̃u + P̃u
ew + T̃ )

+λ(s)
c (P̃c + P̃ c

ew)

+λ(s)
t (P̃t + P̃ t

ew)
]
, (15)

where the notation is as in (10) and the minus sign is due
to our definition of meson states. The amplitude T̃ arises
from the fact that the current–current operators

Qu
1 = (ūαsβ)V−A (b̄βuα)V−A

Qu
2 = (ūαsα)V−A (b̄βuβ)V−A , (16)

where α and β are colour indices, contribute to B0
d →

π−K+ also through insertions into tree-diagram-like topo-
logies. Such contributions are absent in the case of B+ →
π+K0, where these operators contribute only through in-
sertions into penguin and annihilation topologies, which
are described by Pu and A, respectively [13].

Using the SU(2) isospin symmetry, which implies the
relations

P̃c = Pc , P̃t = Pt (17)

for the penguin topologies with internal charm and top
quarks [13], we arrive at the following amplitude relations:

A(B+ → π+K0) ≡ P (18)
A(B0

d → π−K+) = − [P + T + Pew] , (19)

where

T ≡ |T |eiδT eiγ

= λ4ARb

[
T̃ − A +

(
P̃u − Pu

)
+
(
P̃u

ew − P̃ t
ew

)
− (Pu

ew − P t
ew
)]

eiγ (20)

Pew ≡ −|Pew|eiδew

= −
(

1 − λ2

2

)
λ2A

×
[(
P̃ t

ew − P̃ c
ew

)
− (P t

ew − P c
ew
)]
. (21)

Here δT and δew denote CP-conserving strong phases. The
amplitude relations (18) and (19), which play a central
role to obtain information about the CKM angle γ, rely
only on the isospin symmetry of strong interactions (for
a detailed discussion, see [13]) and involve only “physi-
cal”, i.e. renormalization-scale- and scheme-independent,
quantities. This feature is obvious since P , usually referred
to as a b̄ → s̄ penguin amplitude, is defined through the
B+ → π+K0 decay amplitude given in (10). The combi-
nation − (T + Pew) is on the other hand defined through
the sum of the B+ → π+K0 and B0

d → π−K+ decay am-
plitudes and therefore also a “physical” quantity. Since T
and Pew describe two different CKM contributions related
to the weak phase factors eiγ and eiπ = −1, respectively,
they are “physical” amplitudes as well. A similar com-
ment applies to the quantities ρeiθ and Ptc parametrizing
the B+ → π+K0 decay amplitude in (10). Let us note
that T is usually referred to as a “tree” amplitude. As can
be seen in (20), T actually receives not only such “tree”
contributions corresponding to T̃ , but also contributions
from annihilation and penguin topologies.

2.2 The B± → π±K and Bd → π∓K± observables

Taking into account that the amplitude relations for the
CP-conjugate modes can be obtained straightforwardly
from the expressions given in Subsect. 2.1 by performing
the substitution γ → − γ, and introducing the observables

r ≡ |T |√〈|P |2〉 , ε ≡ |Pew|√〈|P |2〉 , (22)

where 〈|P |2〉 ≡ 1
2
(|P |2 + |P |2) , (23)

as well as the CP-conserving strong phases

δ ≡ δT − δtc , ∆ ≡ δew − δtc , (24)

we get the following expression for the ratio R of combined
branching ratios, which has been defined in (6):

R = 1 − 2r
[cos δ cos γ + ρ cos(δ − θ)]√

1 + 2ρ cos θ cos γ + ρ2
+ r2

+2ε
[cos∆+ ρ cos(∆− θ) cos γ]√

1 + 2ρ cos θ cos γ + ρ2

−2rε cos(δ −∆) cos γ + ε2. (25)

In order to determine γ, the “pseudo-asymmetry”

A0 ≡ BR(B0
d → π−K+) − BR(B0

d → π+K−)
BR(B+ → π+K0) + BR(B− → π−K0)

(26)

turns out to be very useful [2]. It takes the form

A0 = A+ +
2r sin δ sin γ√

1 + 2ρ cos θ cos γ + ρ2
+ 2rε sin(δ −∆) sin γ

+
2ερ sin(∆− θ) sin γ√
1 + 2ρ cos θ cos γ + ρ2

, (27)
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where

A+ ≡ BR(B+ → π+K0) − BR(B− → π−K0)
BR(B+ → π+K0) + BR(B− → π−K0)

= − 2ρ sin θ sin γ
1 + 2ρ cos θ cos γ + ρ2 (28)

measures direct CP violation in the decay B+ → π+K0.
Note that tiny phase-space effects have been neglected in
(25) and (27) (for a more detailed discussion, see [8]).

The expressions given in (22)–(25) are the correct gen-
eralization of the formulae derived in [8], where points (ii)
and (iii) listed in Sect. 1 have been assumed, i.e. ρ = 0
and ε = 0. They take into account both rescattering and
electroweak penguin effects in a completely general way
and make use only of the isospin symmetry of strong in-
teractions. Before we investigate these effects in detail in
Sects. 4 and 5, let us first discuss strategies to constrain
and determine the CKM angle γ from these observables.

3 Strategies to constrain
and determine the CKM angle γ
from B± → π±K and Bd → π∓K± decays

The observables R and A0 provide valuable information
about the CKM angle γ. A measurement of the asymmetry
A0 allows us to eliminate the CP-conserving strong phase
δ in the ratio R of combined B → πK branching ratios
(see (25) and (27)). In the special case ρ = ε = 0, we get an
expression for R depending only on γ and r. Consequently,
if r could be fixed, we would have a method to determine
γ [1,2]. While this approach was presented in [1] as an
approximate way to fix this angle, because of the model
dependence introduced through r, recent studies [2,3] us-
ing arguments based on “factorization” came to the con-
clusion that a future theoretical uncertainty of r as small
as O(10%) may be achievable. In that case, a determina-
tion of γ at future B factories (BaBar, BELLE, CLEO III)
employing this approach would be limited rather by statis-
tics than by the uncertainty introduced through r [3]. In
Sect. 4 we will see that large contributions to B → πK
decays from rescattering processes may affect r severely,
thereby shifting it significantly from its “factorized” value
[8]

r|fact = 0.16 × a1 ×
[ |Vub|
3.2 × 10−3

]

×
√[

2.3 × 10−5

BR(B± → π±K)

]
×
[
τBu

1.6 ps

]
. (29)

Here the relevant B → π form factor obtained in the BSW
model [23] has been used and a1 ≈ 1 is the usual phe-
nomenological colour factor [24]. Consequently a reliable
determination of r may be precluded by rescattering ef-
fects.

3.1 Bounds on the CKM angle γ

As was pointed out in [8], the observable R by itself may
allow an interesting bound on γ, which does not require
any information about r. The idea is as follows: if one as-
sumes ρ = ε = 0 and keeps both r and the strong phase
δ in the expression for R as free “unknown” parameters,
one finds that it takes a minimal value given by sin2 γ, i.e.
we have R ≥ sin2 γ. Consequently, if R is found experi-
mentally to be smaller than 1, we get the allowed range
(5) for γ, with γ0 given by (7).

In this section we improve this bound in two respects
by taking into account both rescattering and electroweak
penguin effects, and the asymmetry A0. As we have al-
ready noted, this observable allows us to eliminate the
strong phase δ in (25). To this end, we rewrite (25) and
(27) as

R = R0 − 2r (h cos δ + k sin δ) + r2 (30)

and
A = (B sin δ − C cos δ) r , (31)

respectively, where the quantities

R0 = 1 + 2
ε

w
[cos∆+ ρ cos(∆− θ) cos γ] + ε2 (32)

h =
1
w

(cos γ + ρ cos θ) + ε cos∆ cos γ

k =
ρ

w
sin θ + ε sin∆ cos γ , (33)

with
w =

√
1 + 2ρ cos θ cos γ + ρ2, (34)

and

A =
A0 −A+

2 sin γ
− ερ

w
sin(∆− θ) , B =

1
w

+ ε cos∆ ,

C = ε sin∆ , (35)

are independent of r. A straightforward calculation yields
the expressions

sin δ =
AB ± C

√
(B2 + C2)r2 −A2

(B2 + C2)r

cos δ =
−AC ±B

√
(B2 + C2)r2 −A2

(B2 + C2)r
, (36)

allowing the elimination of the strong phase δ in (30):

R = R0 −AD ∓ E
√

(B2 + C2)r2 −A2 + r2, (37)

where

D = 2
(
kB − hC

B2 + C2

)
, E = 2

(
hB + kC

B2 + C2

)
. (38)

Treating now r in (37) as a free variable, we find that R
takes a minimal value for

r = r0 ≡
√

A2

B2 + C2 +
(B2 + C2)E2

4
, (39)
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Fig. 1. The dependence of Rmin on the CKM angle γ for
various values of A0 in the case of neglected rescattering and
electroweak penguin effects, i.e. ρ = ε = 0

which has the following form:

Rmin = κ sin2 γ +
1
κ

(
A0

2 sin γ

)2

. (40)

The rescattering and electroweak penguin effects are in-
cluded in this transparent expression through the param-
eter κ, which is given by

κ =
1
w2

[
1 + 2(εw) cos∆+ (εw)2

]
. (41)

In order to derive these formulae, no approximations have
been made and they are valid exactly. The dependence of
Rmin on γ for the special case ρ = ε = 0 and for various
values of A0 is shown in Fig. 1, where A0 = 0 corresponds
to the bound presented in [8]. The modifications of this
figure through ρ 6= 0 and ε 6= 0 are investigated in the
following sections. If R will be found experimentally to be
smaller than 1, or if it should become possible to obtain
an experimental upper limit Rmax

exp < 1, the values of γ
implying Rmin > R or Rmin > Rmax

exp would be excluded.
For values of R as small as 0.65, which is the central value
of present CLEO data, a large region around γ = 90◦
would be excluded. As soon as we have a non-vanishing
experimental result for A0, also an interval around γ =
0◦ and 180◦ can be ruled out, while the impact on the
excluded region around 90◦ is rather small, as can be seen
in Fig. 1. Let us note that the minima of the curves shown
in this figure correspond to Rmin = |A0|, and that the
values of γ between 0◦ and 90◦ correspond to cos δ > 0,
while those between 90◦ and 180◦ to cos δ < 0. Estimates
based on quark-level calculations indicate cos δ > 0 and
hence favour the former range [8,25].
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Fig. 2. The allowed regions for r corresponding to various val-
ues of R in the case of neglected rescattering and electroweak
penguin effects

3.2 Bounds on r and the determination
of the CKM angle γ

Another interesting aspect of a measurement of R is a
bound on r of the form

rmin ≤ r ≤ rmax (42)

with

rmax
min =

∣∣∣∣
√
R0 − κ sin2 γ ±

√
R − κ sin2 γ

∣∣∣∣ , (43)

which arises if we treat δ in (30) as a free parameter. This
bound is shown in Fig. 2 for ρ = ε = 0 and for various
values of R corresponding to its presently allowed experi-
mental range. In this figure it can also be seen nicely which
values of γ are excluded in the case of R < 1. Moreover,
we observe that small values of R require large values of r
in comparison with the “factorized” result (29), which is
at the edge of compatibility with the central values of the
present CLEO measurements [7], yielding R = 0.65 and
r ≥ 0.2. For γ ∼> 41◦ – the lower bound obtained from
the usual fits of the unitarity triangle [9] – we even have
r ∼> 0.3. This interesting feature has already been pointed
out in [8], and we shall come back to it in the following
section.

As soon as A0 has been measured, we can go beyond
this bound. Then we are in a position to determine the
dependence of r on γ with the help of (37), yielding

r =
√
r20 + (R−Rmin) ±

√
(B2 + C2)E2 (R−Rmin) .

(44)
In Fig. 3 we have chosen R = 0.65 to illustrate this de-
pendence for various pseudo-asymmetries A0 in the case
of neglected rescattering and electroweak penguin effects.
The curves plotted there are a mathematical implemen-
tation of the amplitude triangles proposed in [1]. Once R
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Fig. 3. The dependence of r on the CKM angle γ for R = 0.65
and for various values of the asymmetry A0 in the case of
neglected rescattering and electroweak penguin effects

and A0 have been measured, the corresponding contours
in the γ–r plane can be calculated. If r could be fixed by
using an additional input, γ could be determined up to a
four-fold ambiguity, as can be seen in Fig. 3. For R < 1,
also the allowed range for γ can be read off nicely from
the corresponding contours.

Although the formulae derived in this section are com-
pletely general, taking into account both rescattering and
electroweak penguin effects, we have not included these
contributions in Figs. 1–3 in order to illustrate the strate-
gies to constrain and determine the CKM angle γ from
B± → π±K, Bd → π∓K± decays in a transparent way.
The issue of final-state interactions and electroweak pen-
guins in these methods will be the subject of the remainder
of this paper.

4 The role of rescattering processes

In the formulae derived in the previous two sections, con-
tributions from rescattering processes are included through
the quantity ρeiθ introduced in (12). An important impli-
cation of ρ 6= 0 and θ 6∈ {0, π} is direct CP violation in the
mode B+ → π+K0, as can be seen in (28). The parameter
ρ describing the “strength” of the rescattering effects is,
however, highly CKM-suppressed by λ2Rb ≈ 0.02. In (12),
we have to distinguish between contributions from pen-
guin topologies with internal top, charm and up quarks,
and annihilation topologies. Concerning the hierarchy of
these contributions, the usual expectation is that annihi-
lation processes play a very minor role and that penguins
with internal top quarks are the most important ones. Fol-
lowing these considerations, one would expect ρ ≈ λ2Rb.
However, also penguins with internal charm and up quarks
lead in general to important contributions, which cannot
be neglected [26,27]. Model calculations performed at the
perturbative quark-level to estimate these contributions

give ρ = O(1%) and do not indicate a significant compen-
sation of the very large CKM suppression of ρ.

4.1 A closer look at the rescattering effects

It has recently been discussed in [13] that rescattering
processes of the kind

B+ → {F (s)
c } → π+K0, (45)

where F (s)
c ∈ {D0D+

s , D
0D∗+

s , D∗0D∗+
s , . . .}, are related

to penguin topologies with internal charm quarks, while
rescattering processes of the kind

B+ → {F (s)
u } → π+K0, (46)

where F (s)
u ∈ {π0K+, π0K∗+, ρ0K∗+, . . .}, are related to

penguin topologies with internal up quarks and to anni-
hilation topologies, which will be discussed below. These
final-state-interaction effects, where channels originating
from the current–current operators Qc

1,2 and Qu
1,2 through

insertions into tree-diagram-like topologies are involved,
can be considered as long-distance contributions to the
amplitudes Pc and Pu, respectively, and are included this
way in (12). While we would have ρ ≈ 0 if rescatter-
ing processes of type (45) played the dominant role in
B+ → π+K0, or ρ = O(λ2Rb) if both (45) and (46) were
similarly important, ρ would be as large as O(10%) if the
final-state interactions arising from processes such as (46)
would dominate B+ → π+K0 so that |Puc|/|Ptc| = O(5).
This order of magnitude is found in a recent attempt [16]
to evaluate the rescattering processes (46) using Regge
phenomenology.

The usual argument for the suppression of annihilation
processes relative to tree-diagram-like topologies by a fac-
tor fB/mB does not apply to rescattering processes [12,
15]. Consequently, these topologies may also play a more
important role than näıvely expected. Model calculations
[12] based on Regge phenomenology typically give an en-
hancement of the ratio |A|/|T̃ | from fB/mB ≈ 0.04 to
O(0.2). Rescattering processes of this kind can be probed,
e.g. by the ∆S= 0 decay B0

d → K+K−. A future stringent
bound on BR(B0

d → K+K−) at the level of O(10−7) or
lower may provide a useful limit on these rescattering ef-
fects [2]. The present upper bound obtained by the CLEO
collaboration is 4.3 × 10−6 [7].

Although the “factorization” hypothesis [28] is in gen-
eral questionable, it may work reasonably well for the
colour-allowed amplitude T̃ [29]. Consequently, in contrast
to r defined by (22), the quantity

r̃ ≡ λ4ARb
|T̃ |√〈|P |2〉 (47)

may be described rather well by the “factorized” expres-
sion (29), i.e. r̃ ≈ 0.15. Since the intrinsic “strength” of
decays such as B+ → π0K+ representing the “first step”
of the rescattering processes (46) is given by r̃, we have
a “plausible” upper bound for ρ through ρ ∼< r̃ ≈ 0.15.
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Note that ρ is typically one order of magnitude smaller,
i.e. ρ = O(0.02), if rescattering processes do not play the
dominant role in B+ → π+K0.

In the following discussion we will not comment fur-
ther on quantitative estimates of rescattering effects. A
reliable theoretical treatment is very difficult and requires
insights into the dynamics of strong interactions that are
unfortunately not available at present. In this paper we
rather investigate the sensitivity of the bounds on γ pre-
sented in Sect. 3 on the quantity ρeiθ, which parametrizes
the rescattering processes, and advocate the use of ex-
perimental data to obtain insights into these final-state
interactions.

4.2 Rescattering effects in bounds on γ

Considering only rescattering processes and neglecting elec-
troweak penguin contributions, which will be discussed in
Sect. 5, (40) gives the simple expression

Rmin =
(

sin γ
w

)2

+
(
wA0

2 sin γ

)2

, (48)

where the rescattering effects are included through w =√
1 + 2ρ cos θ cos γ + ρ2. While these effects are minimal

for θ ∈ {90◦, 270◦} and only of second order, i.e. of O(ρ2),
they are maximal for θ ∈ {0◦, 180◦}. In Fig. 4 we show
these maximal effects for various values of ρ in the case
of A0 = 0. Looking at this figure, we first observe that we
have negligibly small effects for ρ = 0.02, which has been
assumed in [8] in the form of point (ii) listed in Sect. 1.
For values of ρ as large as 0.15, we have an uncertainty for
γmax
0 (see (5) and (7)) of at most ±10◦. Consequently, even

for large rescattering effects, a significant region around
γ = 90◦ will still be excluded, provided R is found ex-
perimentally to be smaller than 1, preferably close to its
present central value of 0.65 or even smaller.

Since we have assumed θ ∈ {0◦, 180◦} in Fig. 4 to
illustrate the maximal effect on Rmin arising from rescat-
tering processes described by a given value of ρ, the decay
B+ → π+K0 would exhibit no direct CP violation in this
case. However, as soon as a non-vanishing value of A+
has been measured, we are in a position to eliminate the
CP-conserving strong phase θ in Rmin. Introducing

U =
A2

+W cos γ
sin2 γ +A2

+ cos2 γ

V =
A2

+W
2 − sin2 γ

sin2 γ +A2
+ cos2 γ

, (49)

with

W =
1 + ρ2

2ρ
, (50)

and using (28), we obtain

cos θ = −U ±
√
U2 − V , (51)
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Fig. 4. The effect of final-state interactions on Rmin for A0 =
0. The curves for a given value of ρ correspond to θ ∈ {0◦, 180◦}
and represent the maximal shift from ρ = 0

which allows us to fix w and

sin θ = − w2A+

2ρ sin γ
(52)

up to a two-fold ambiguity. Moreover an interesting con-
straint on ρ is provided by the direct CP asymmetry A+
in B+ → π+K0. It implies an allowed range

ρmin ≤ ρ ≤ ρmax, (53)

where the upper and lower bounds

ρmax
min

=

√
A2

+ +
(
1 −A2

+
)
sin2 γ ±

√(
1 −A2

+
)
sin2 γ

|A+| (54)

correspond to θ = θ0 with

cos θ0 = − |A+| cos γ√
sin2 γ +A2

+ cos2 γ

sin θ0 =
tan γ
A+

cos θ0 . (55)

Keeping the CKM angle γ as a free parameter, we find

ρ ≥
1 −

√
1 −A2

+

|A+| = ρmin|γ=90◦ . (56)

In particular the lower bound ρmin is of special interest,
and we show its dependence on the CKM angle γ for var-
ious values of A+ in Fig. 5. It is interesting to note that
these curves exclude values of γ around 0◦ and 180◦, if an
upper limit on ρ is available.

In Fig. 6 we assume that the asymmetries |A+| = 0.1
and |A0| = 0.2 have been measured and show the depen-
dence of Rmin on γ for (ρ, θ) = (ρmin, θ0) and ρ = 0.15.
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Fig. 5. The dependence of ρmin on the CKM angle γ for various
values of the direct CP asymmetry A+ arising in the decay
B+ → π+K0

If ρ were known, we would have two solutions for Rmin.
Assuming on the other hand that |A+| = 0.1 is due to
ρ ≤ 0.15, we get an uncertainty of ±6◦ for the bound on γ
corresponding to R = 0.65 and |A0| = 0.2. Furthermore,
this figure illustrates nicely how values of γ around 0◦
and 180◦ can be excluded through |A+| 6= 0, as we noted
above. In the case of the dot-dashed lines, these values of
γ correspond to ρmin > 0.15. Consequently, the allowed
range

7◦ ≤ γ ≤ 53◦ ∨ 127◦ ≤ γ ≤ 173◦ , (57)

which would be implied by R = 0.65 and |A0| = 0.2,
is modified through rescattering effects with ρ ≤ 0.15 –
leading to |A+| = 0.1 – as follows:

20◦ ≤ γ ≤ 59◦ ∨ 121◦ ≤ γ ≤ 160◦ . (58)

4.3 Including rescattering effects
in the bounds on γ through B± → K±K

Concerning the bounds on γ provided by (40), the rescat-
tering effects can be included completely by relating the
decay B+ → π+K0 to the mode B+ → K+K0 with the
help of the SU(3) flavour symmetry of strong interactions.
Since these decays are actually related to each other by
interchanging all d and s quarks, the so-called U spin of
the SU(3) flavour symmetry suffices to this end.

Using the unitarity of the CKM matrix and a notation
similar to that in (10), we get

A(B+ → K+K0)

= λ3A

[
1 −

(
1 − λ2

λ2

)
ρ(d)eiθdeiγ

]
P(d)

tc , (59)

where

ρ(d)eiθd =
λ2Rb

1 − λ2/2

[
1 −

(
P(d)

uc + A(d)

P(d)
tc

)]
(60)
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Fig. 6. The dependence of Rmin on the CKM angle γ for
|A0| = 0.2 in the presence of rescattering effects, leading to
|A+| = 0.1 (electroweak penguins are neglected, i.e. ε = 0)

corresponds to (12). Consequently, direct CP violation in
B+ → K+K0 is described in analogy to (28) by

A
(d)
+ ≡ BR(B+ → K+K0) − BR(B− → K−K0)

BR(B+ → K+K0) + BR(B− → K−K0)
(61)

=
2λ2(1 − λ2)ρ(d) sin θd sin γ

λ4 − 2λ2(1 − λ2)ρ(d) cos θd cos γ + (1 − λ2)2ρ(d) 2 .

As was pointed out in [13], another important quantity
to deal with rescattering effects is the following ratio of
combined branching ratios:

H ≡ R 2
SU(3)

(
1 − λ2

λ2

)
BR(B± → K±K)
BR(B± → π±K)

(62)

=
λ4 − 2λ2(1 − λ2)ρ(d) cos θd cos γ + (1 − λ2)2ρ(d)2

λ4 (1 + 2ρ cos θ cos γ + ρ2)
,

where BR(B± → K±K) is defined in analogy to (1), tiny
phase-space effects have been neglected (for a more de-
tailed discussion, see [8]), and

RSU(3) =
M2

B −M2
π

M2
B −M2

K

FBπ(M2
K ; 0+)

FBK(M2
K ; 0+)

(63)

describes factorizable SU(3) breaking. Here FBπ(M2
K ; 0+)

and FBK(M2
K ; 0+) are form factors parametrizing the ha-

dronic quark-current matrix elements 〈π|(b̄d)V−A|B〉 and
〈K|(b̄s)V−A|B〉, respectively. Using, for example, the
model of Bauer, Stech and Wirbel [23], we have RSU(3) =
O(0.7). At present, there is unfortunately no reliable ap-
proach available to deal with non-factorizable SU(3) break-
ing. Since already the factorizable corrections are signifi-
cant, we expect that non-factorizable SU(3) breaking may
also lead to sizeable effects.

The three observables H, A+ and A(d)
+ depend on the

four “unknowns” ρ, θ, ρ(d), θd, and of course also on the
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CKM angle γ. Using an additional SU(3) input, either

ρ = ζρρ
(d) or θ = ζθθd , (64)

we are in a position to extract these quantities as functions
of γ from the measured values ofH, A+ and A(d)

+ , provided
either ζρ or ζθ, which parametrize SU(3)-breaking correc-
tions, are known. As a first “guess”, we may use ζρ = 1 or
ζθ = 1. Keeping these SU(3)-breaking parameters explic-
itly in our formulae, it is possible to study the sensitivity
to deviations of ζρ,θ from 1, or to take into account SU(3)
breaking once we have a better understanding of this phe-
nomenon.

In order to include the rescattering effects in the bounds
on γ arising from (40), ρ and θ determined this way are
sufficient. The point is that we only have to know the
dependence of Rmin on γ to constrain this CKM angle
through the experimentally determined values of R and
A0. The modification of this γ dependence through rescat-
tering effects can, however, be determined with the help of
ρ and θ obtained by using the approach discussed above.
Consequently, the decays B+ → π+K0 and B+ → K+K0

play a key role in taking into account final-state interac-
tions in our bounds on γ. As we will see below, impor-
tant by-products of this strategy are a range for ρ, and
the exclusion of values of γ within regions around 0◦ and
180◦. This approach works even in the case of “trivial”
strong phases θ, θd ∈ {0◦, 180◦}, where B+ → π+K0 and
B+ → K+K0 would exhibit no CP-violating effects.

It is interesting to note that a stronger SU(3) input
than (64), assuming

ρ = ρ(d) and θ = θd , (65)

yields a nice relation between A+, A(d)
+ and the combined

B± → π±K and B± → K±K branching ratios:

A+

A
(d)
+

= −R 2
SU(3)

BR(B± → K±K)
BR(B± → π±K)

= −
(

λ2

1 − λ2

)
H , (66)

which has already been pointed out in [13]. This expression
implies opposite signs for A+ and A

(d)
+ and, moreover,

allows a determination of H and of the SU(3)-breaking
parameter RSU(3). A future experiment finding that A+

and A
(d)
+ have equal signs would mean either that sin θ

and sin θd have opposite signs, or contributions from “new
physics”.

The present upper limit from the CLEO collaboration
[7] on the combined B± → K±K branching ratio is given
by BR(B± → K±K) < 2.1 × 10−5. Let us have a closer
look at the impact of rescattering effects on B± → K±K.
To this end we assume RSU(3) = 0.7, the SU(3) rela-
tions given in (65), γ = 50◦, θ = 25◦, and BR(B± →
π±K) = 2.3 × 10−5, which is the central value of present
CLEO data. In order to discuss the case of tiny rescatter-
ing effects, we use ρ = 0.02, yielding BR(B± → K±K) =
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Fig. 8. The dependence of Rmin on γ obtained by relating
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metry for the example discussed in the text (|A0| = 0.2)

1.6×10−6, A(d)
+ = + 37% and A+ = − 1.3%. These values

are in accordance with the results obtained by performing
model calculations at the perturbative quark level [19]. In
this case, the CLEO bound on BR(B± → K±K) would
be one order of magnitude above the estimated branching
ratio. However, in contrast to B± → π±K, where only
the CP asymmetry may be enhanced sizeably through
final-state interactions related to (46) and the branching
ratio remains essentially unchanged, the decay rate for
B± → K±K may be affected dramatically by such rescat-
tering processes. To illustrate this remarkable feature, we
use ρ = 0.15, yielding BR(B± → K±K) = 1.2 × 10−5,
A

(d)
+ = + 30% and A+ = − 8.1%. While the rescattering

effects lead to some reduction ofA(d)
+ , in this example, they

enhance the branching ratio for B± → K±K by almost a
factor 10, and could thereby make an experimental study
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of this mode feasible. These considerations demonstrate
that BR(B± → K±K) may actually be much closer to the
present CLEO bound than expected from simple quark-
level estimates, if rescattering effects are in fact large. Con-
sequently, B± → K±K may be a very promising mode not
just to constrain, but to control rescattering effects in the
bounds on the CKM angle γ arising from (40).

In order to put this statement on a more quantita-
tive ground, let us assume that future experiments find
BR(B± → π±K) = 2.3×10−5, A+ = − 8.1% and BR(B±

→ K±K) = 1.2 × 10−5, A(d)
+ = + 30%, just as in the ex-

ample considered above. To simplify our discussion, let us
again use the SU(3) relations listed in (65). With the help
of (66) we would then obtain RSU(3) = 0.7 and H = 5.3,
and the quantitiy w containing essentially all the informa-
tion needed to take into account the rescattering effects
in (40) is given by

w =
1
λ

√
ρ2 + λ2(1 − ρ2)
1 + λ2(H − 1)

. (67)

Moreover we obtain a simple expression for cos θ. Combin-
ing it with (51) yields a quadratic equation for ρ2, i.e. we
can fix this parameter up to a two-fold ambiguity. Using
(67), w can hence be determined up to a two-fold ambigu-
ity as well. In Fig. 7 we show the dependence of ρ extracted
this way on the CKM angle γ in the case of our example.
We observe two interesting features. First, the range for
ρ is quite small in this case: 0.08 ≤ ρ ≤ 0.16. Secondly,
values of γ within 0◦ ≤ γ ≤ 22◦ ∨ 158◦ ≤ γ ≤ 180◦ are
excluded. Assuming that A0 = ±0.2 has been measured
and using (48) and (67), we obtain the solid lines shown in
Fig. 8, where we have also included the curve correspond-
ing to (ρ, θ) = (ρmin, θ0). For a given value of R, we can
read off easily the allowed range for γ taking into account
the rescattering effects. In the case of R = 0.65, we would
obtain 22◦ ≤ γ ≤ 59◦ ∨ 121◦ ≤ γ ≤ 158◦.

4.4 Rescattering effects in strategies to determine γ

In order not just to constrain, but to extract the CKM
angle γ from the B → πK decays considered in this paper,
information on r is essential, as we have seen in Sect. 3.
Before we focus on this quantity, let us first have a closer
look at the modification of the contours in the γ–r plane
(see Fig. 3) through rescattering effects.

In Fig. 9 we show the shift of the contours correspond-
ing to R = 0.65 and |A0| = 0.2 for θ ∈ {0◦, 180◦}. In this
case, B+ → π+K0 would exhibit no CP violation. On the
other hand, the situation arising if a non-vanishing value
of A+ has been measured is illustrated in Figs. 10 and 11
for A0 = ±0.2, A+ = ±0.1 and A0 = ±0.2, A+ = ∓ 0.1,
respectively. There we have chosen R = 0.85, favouring
smaller values of r thanR = 0.65, i.e. values that are closer
to the “factorized” result (29). We observe that there is
an interesting difference between the cases where the CP
asymmetries A0 and A+ have equal or opposite signs. In
the former case even lower values of r are favoured. If we
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Fig. 9. The shift of the contours in the γ–r plane correspond-
ing to R = 0.65 and |A0| = 0.2 through rescattering effects
(θ ∈ {0◦, 180◦}, ε = 0)
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Fig. 10. Contours in the γ–r plane corresponding to R = 0.85,
A0 = ±0.2 and A+ = ±0.1 for neglected electroweak penguin
contributions, i.e. ε = 0

could fix r, we would be in a position to extract the CKM
angle γ up to discrete ambiguities with the help of these
figures. In this example, the uncertainty of γ would be at
most ±8◦, if we assume that the CP asymmetries A+ are
due to ρ ≤ 0.15. Such an assumption can be avoided, if we
apply the B± → K±K approach outlined in Subsect. 4.3,
which allows us to take into account the rescattering ef-
fects also in the contours in the γ–r plane.

Unfortunately, the value of r is also affected by rescat-
tering processes and it is not possible to include them
in a similarly “easy” way as in the case of these con-
tours. In order to discuss this subtle point, let us have a
closer look at the amplitude T defined by (20). Using the
low-energy effective Hamiltonian describing B+ → π+K0,
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Fig. 11. Contours in the γ–r plane corresponding to R = 0.85,
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B0
d → π−K+ decays, which takes the form [30]

Heff =
GF√

2

[
λ(s)

u

2∑
k=1

Ck(µ)Qu
k + λ(s)

c

2∑
k=1

Ck(µ)Qc
k

−λ(s)
t

10∑
k=3

Ck(µ)Qk

]
, (68)

whereQ3,. . . ,Q6 andQ7,. . . ,Q10 are QCD and electroweak
penguin operators, respectively, and where µ = O(mb)
is a renormalization scale, as well as the isospin symme-
try of strong interactions, T can be expressed in terms of
hadronic matrix elements of the current–current operators
(16) as follows [13]:

T ≡ −GF√
2
λ4ARb

[
C1(µ)〈K+π−|Qu

1 (µ)|B0
d〉T

+C2(µ)〈K+π−|Qu
2 (µ)|B0

d〉T
+
{
C1(µ)〈K+π−|Qu

1 (µ)|B0
d〉P

+C2(µ)〈K+π−|Qu
2 (µ)|B0

d〉P
−C1(µ)〈K+π−|Qd

1(µ)|B0
d〉

−C2(µ)〈K+π−|Qd
2(µ)|B0

d〉
}]

eiγ , (69)

where we have to perform the replacement u → d in (16)
in order to get the expressions for Qd

1,2. The labels “T”
and “P” denote insertions of the current–current opera-
tors Qu

1,2 into tree-diagram-like and penguin-like topolo-
gies. While the terms in (69) with label “T” correspond
to the T̃ amplitude in (20), the Qd

1,2 contributions in the
term in curly brackets are required in order to apply the
SU(2) isospin symmetry correctly to relate the decays
B+ → π+K0 and B0

d → π−K+ [13]. The insertions of
Qu

1,2 into penguin-like topologies in this term correspond
to the P̃u amplitude in (20), while the Qd

1,2 operators con-
tribute both through insertions into penguin topologies

and through annihilation processes and describe the com-
bination A + Pu in (20). The electroweak penguin ampli-
tudes appearing in that expression are neglected in (69).
They play a minor role for T , as we will see in the next
section, where the operator expression we shall give for T
will take into account also electroweak penguins.

While the short-distance contributions to the term in
curly brackets in (69) cancel, this is not the case for the
long-distance contributions associated with final-state in-
teractions. In Fig. 12 we show some of the correspond-
ing Feynman diagrams, where (a) and (b) represent in-
sertions of the current–current operators Qq

1,2 (q ∈ {u, d})
into penguin-like topologies, whereas (c) is an annihilation
topology involving only Qd

1,2. Having a look at these dia-
grams, it is obvious that their contributions do not in gen-
eral cancel in (69). Concerning the topologies (a), the Qu

1,2
operators contribute through rescattering processes of the
type B0

d → {π−K+} → π−K+, while the Qd
1,2 operators

contribute through B0
d → {π0K0} → π−K+ and involve

the d̄ d/
√

2 piece of a neutral pion. In the latter case, also
B0

d → {η K0, . . .} → π−K+ processes are expected to play
an important role. In the case of the topologies (b), only
rescattering processes of the kind B0

d → {π0K0} → π−K+

contribute. Since ū u and d̄ d enter in the π0 wave func-
tion with opposite signs, the topologies (b) with Qu

1,2 and
Qd

1,2 insertions have opposite signs as well and do not can-
cel in the difference in (69). The annihilation topology (c)
has anyway no counterpart with Qu

1,2 insertions. Conse-
quently, the rescattering contributions to the term in curly
brackets in (69) do not cancel. If they are of the same or-
der of magnitude as T̃ describing the strength of the “first
step” in the rescattering processes of the type (a) – such
a scenario is found in the model calculation performed in
[16] – the value of r could in principle be shifted signifi-
cantly from its “factorized” value (29).

The feature described in the previous paragraph pro-
vides an interesting mechanism to generate values of r
larger than those obtained within the framework of “fac-
torization”, and may be the reason for the fact that the
values of r preferred by present CLEO data are at the edge
of compatibility with (29), as we noted in Subsect. 3.2. In
particular, the small central value of R = 0.65 may indi-
cate already that r is enhanced considerably by final-state
interactions, and it may well be possible that future mea-
surements will stabilize around this näıvely small value.

Although this is good news for the bounds on γ from
B → πK decays, it is bad news for the corresponding ex-
tractions of this CKM angle, which require the knowledge
of r. Unfortunately, in the case of this quantity, final-state
interactions cannot be taken into account in a simple way.
Consequently, expectations based on factorization that a
future theoretical uncertainty of r as small as O(10%) may
be achievable [2,3] appear too optimistic. If we look, how-
ever, at Figs. 10 and 11, we observe that the dependence
of γ on r is very weak for r ∼> 0.3 in this example; even
for values of R as large as 0.85, a significant region around
γ = 90◦ could be excluded. The power of a future accurate
measurement of the decays B± → π±K and Bd → π∓K±
is therefore probably not a “precision” measurement of
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Fig. 12a–c. Contributions to the amplitude T through rescat-
tering processes of the kind B0

d → {π−K+} → π−K+ and
B0

d → {π0K0} → π−K+. The shaded circles represent inser-
tions of the current–current operators Qq

1,2, where q ∈ {u, d}.
In the case of the annihilation topology c, only the Qd

1,2 oper-
ators contribute

γ, but phenomenologically interesting constraints on this
CKM angle.

5 The role of electroweak penguins

Let us begin our discussion of electroweak penguin effects
by first having a look at (40). For ρ = 0, i.e. neglected
rescattering effects, the modification of Rmin through elec-
troweak penguins is described by κ = 1 + 2ε cos∆ + ε2.
These effects are minimal and only of second order in ε
for ∆ ∈ {90◦, 270◦}, and maximal for ∆ ∈ {0◦, 180◦}. In
the case of ∆ = 0◦, the bounds on γ get stronger, ex-
cluding a larger region around γ = 90◦, while they are
weakened for ∆ = 180◦. In Figs. 13 and 14 we show the
maximal electroweak penguin effects for various values of
ε. The electroweak penguins are “colour-suppressed” in
the case of B+ → π+K0 and B0

d → π−K+, and estimates
based on simple calculations performed at the perturba-
tive quark level, where the relevant hadronic matrix el-
ements are treated within the “factorization” approach,
typically give ε = O(1%) [8]. Even for such small values of
ε, there is a sizeable shift of Rmin, as can be seen in Figs. 13
and 14. Comparing these figures with Fig. 4, we observe
that Rmin is more sensitive to electroweak penguin than
to rescattering effects. Since the crude estimates yielding
ε = O(1%) may well underestimate the role of electroweak
penguins [2,15,21], an improved theoretical description of
these topologies is highly desirable.

5.1 An improved theoretical description

The relevant electroweak penguin amplitude affecting
bounds and extractions of the CKM angle γ from B± →
π±K, Bd → π∓K± decays has been given in (21), where
P t

ew and P̃ t
ew correspond to electroweak penguins with in-

ternal top quarks and can be expressed in terms of hadronic
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Fig. 13. The effect of electroweak penguins on Rmin for
A0 = 0. The curves for a given value of ε correspond to
∆ ∈ {0◦, 180◦} and represent the maximal shift from ε = 0

matrix elements of four-quark operators as follows (see
(68)):

P t
ew = − GF√

2

10∑
k=7

Ck(µ)〈K0π+|Qk(µ)|B+〉 (70)

P̃ t
ew =

GF√
2

10∑
k=7

Ck(µ)〈K+π−|Qk(µ)|B0
d〉. (71)

The electroweak penguin operators Q7,. . . ,Q10 have the
following structure:

Qk =
3
2

∑
q=u,d,c,s,b

cq Q
q
k , (72)
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Fig. 14. The effect of electroweak penguins on Rmin for
|A0| = 0.2. The curves for a given value of ε correspond to
∆ ∈ {0◦, 180◦} and represent the maximal shift from ε = 0

where cq denotes the electrical quark charges and the four-
quark operators are given by

Qq
7 = (b̄αsα)V−A(q̄βqβ)V+A

Qq
8 = (b̄αsβ)V−A(q̄βqα)V+A (73)

Qq
9 = (b̄αsα)V−A(q̄βqβ)V−A

Qq
10 = (b̄αsβ)V−A(q̄βqα)V−A .

The amplitude P t
ew can therefore be written as

P t
ew

= −GF√
2

3
2


cd 10∑

k=7

Ck(µ)〈K0π+|Qd
k(µ)|B+〉T

+cd
10∑

k=7

Ck(µ)〈K0π+|Qd
k(µ)|B+〉P

+cu
10∑

k=7

Ck(µ)〈K0π+|Qu
k(µ)|B+〉

+
∑

q=c,s,b

cq

{
10∑

k=7

Ck(µ)〈K0π+|Qq
k(µ)|B+〉

} . (74)

The notation in this expression is as in (69). While the first
term describes the contributions of Qd

k arising from in-
sertions into tree-diagram-like topologies, the other terms
contain in particular also rescattering effects, which may
play an important role. Applying the SU(2) isospin sym-
metry to the hadronic matrix elements of the Qq

k opera-
tors, we obtain

P t
ew

=
GF√

2
3
2


cd 10∑

k=7

Ck(µ)〈K+π−|Qu
k(µ)|B0

d〉T

+cd
10∑

k=7

Ck(µ)〈K+π−|Qu
k(µ)|B0

d〉P

+cu
10∑

k=7

Ck(µ)〈K+π−|Qd
k(µ)|B0

d〉

+
∑

q=c,s,b

cq

{
10∑

k=7

Ck(µ)〈K+π−|Qq
k(µ)|B0

d〉
}
 , (75)

while we have on the other hand

P̃ t
ew

=
GF√

2
3
2


cu 10∑

k=7

Ck(µ)〈K+π−|Qu
k(µ)|B0

d〉T

+cu
10∑

k=7

Ck(µ)〈K+π−|Qu
k(µ)|B0

d〉P

+cd
10∑

k=7

Ck(µ)〈K+π−|Qd
k(µ)|B0

d〉

+
∑

q=c,s,b

cq

{
10∑

k=7

Ck(µ)〈K+π−|Qq
k(µ)|B0

d〉
}
 . (76)

Concerning the quantity Pew, only the difference of these
amplitudes is relevant, which is given by

P̃ t
ew − P t

ew

= (cu − cd)
GF√

2
3
2

[
10∑

k=7

Ck(µ)〈K+π−|Qu
k(µ)|B0

d〉T

+
10∑

k=7

Ck(µ)
{〈K+π−|Qu

k(µ)|B0
d〉P

− 〈K+π−|Qd
k(µ)|B0

d〉}
]
. (77)

This expression is much simpler than (75) and (76), since
the contributions of Qq

k with q = c, s, b – including also
rescattering contributions that are very hard to estimate –
cancel fortunately because of the isospin symmetry. Since
only the Wilson coefficients C9 and C10 are sizeable [30],
where C9 plays the most important role and is about three
times larger than C10, the amplitude difference (77) sim-
plifies further and we have only to care about Qu

9,10 and
Qd

9,10. If we compare these operators with the current–
current operators given in (16), we observe that they are
related to each other through a simple Fierz transforma-
tion:

Qu,d
9

∣∣∣
Fierz

= Qu,d
1 , Qu,d

10

∣∣∣
Fierz

= Qu,d
2 . (78)

Beyond the leading order, one has to be careful, when
performing such Fierz transformations, since the next-to-
leading order Wilson coefficients depend also on the cho-
sen operator basis [30]. Here we will only use leading-order
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Wilson coefficients for simplicity, and will comment on the
influence of next-to-leading order corrections on our “fi-
nal” result below.

The amplitudes P c
ew and P̃ c

ew in (21) corresponding to
electroweak penguins with internal charm quarks, which
would be needed for a consistent use of next-to-leading
order Wilson coefficients [30], play a negligible role. The
point is that electroweak penguins only become important
because of the large top-quark mass, which compensates
their suppression relative to the QCD penguins due to
the small ratio α/αs = O(10−2) of the QED and QCD
couplings. This feature is reflected by the sizeable value of
C9.

Consequently we arrive at the following expression for
Pew:

Pew = −λ2A
GF√

2
3
2

[
C9(µ)〈K+π−|Qu

1 (µ)|B0
d〉T

+C10(µ)〈K+π−|Qu
2 (µ)|B0

d〉T
+
{
C9(µ)〈K+π−|Qu

1 (µ)|B0
d〉P

+C10(µ)〈K+π−|Qu
2 (µ)|B0

d〉P
−C9(µ)〈K+π−|Qd

1(µ)|B0
d〉

−C10(µ)〈K+π−|Qd
2(µ)|B0

d〉}] , (79)

where we have neglected the O(λ4) term in (21) and have
used in addition cu − cd = 1. Remarkably, (79) is com-
pletely analogous to the operator expression for T given
in (69). Introducing the following non-perturbative “bag”
parameters:

1
3
B1(µ)〈K+π−|Qu

2 |B0
d〉factT

≡ 〈K+π−|Qu
1 (µ)|B0

d〉T
+{〈K+π−|Qu

1 (µ)|B0
d〉P

−〈K+π−|Qd
1(µ)|B0

d〉} (80)

B2(µ)〈K+π−|Qu
2 |B0

d〉factT

≡ 〈K+π−|Qu
2 (µ)|B0

d〉T
+{〈K+π−|Qu

2 (µ)|B0
d〉P

−〈K+π−|Qd
2(µ)|B0

d〉} , (81)

we get

ε

r
ei(∆−δ) = − 3

2λ2Rb

[
C9(µ)B1(µ) + 3C10(µ)B2(µ)
C ′

1(µ)B1(µ) + 3C ′
2(µ)B2(µ)

]
,

(82)
where also the tiny electroweak penguin contributions to
T , which have been neglected for simplicity in (69), are
included through

C ′
1(µ) ≡ C1(µ) +

3
2
C9(µ)

C ′
2(µ) ≡ C2(µ) +

3
2
C10(µ) . (83)

The expression (82) depends only on a single non-
perturbative parameter given by B2(µ)/B1(µ), which is

in general a complex quantity owing to final-state interac-
tions. It is possible to rewrite (82) in an even more trans-
parent way by using the quantities

aeff
1 ≡ 1

3
C ′

1(µ)B1(µ) + C ′
2(µ)B2(µ) (84)

aeff
2 ≡ C ′

1(µ)B2(µ) +
1
3
C ′

2(µ)B1(µ) , (85)

which correspond to the usual phenomenological colour
factors a1 and a2 describing the intrinsic strength of colour-
suppressed and colour-allowed decay processes, respectively
[24]. Comparing experimental data on B− → D(∗)0π−

and B0
d → D(∗)+π−, as well as on B− → D(∗)0ρ− and

B0
d → D(∗)+ρ− decays gives a2/a1 = 0.26 ± 0.05 ± 0.09

[31], where a1 and a2 are real quantities and their rela-
tive sign is interestingly found to be positive, which is in
contrast to the case of D decays.

A straightforward calculation yields

B(µ) ≡ B2(µ)
B1(µ)

=
1
3

[
aeiωC1(µ) − C2(µ)
C1(µ) − aeiωC2(µ)

]
, (86)

where

aeiω ≡ aeff
2

aeff
1

(87)

is in general also a complex quantity (a = |aeff
2 |/|aeff

1 | is,
however, real and positive). Inserting this expression for
B(µ) into (82), we obtain

ε

r
ei(∆−δ)

=
3

2λ2Rb

[
C ′

1(µ)C9(µ) − C ′
2(µ)C10(µ)

C ′2
2 (µ) − C ′2

1 (µ)

+aeiω
{
C ′

1(µ)C10(µ) − C ′
2(µ)C9(µ)

C ′2
2 (µ) − C ′2

1 (µ)

}]
. (88)

Since there is a strong cancellation in the first term, lead-
ing to

C ′
1(µ)C9(µ) − C ′

2(µ)C10(µ)
C ′

1(µ)C10(µ) − C ′
2(µ)C9(µ)

= O(10−2) , (89)

we finally arrive at

ε

r
ei(∆−δ) ≈ 3

2λ2Rb

[
C ′

1(µ)C10(µ) − C ′
2(µ)C9(µ)

C ′2
2 (µ) − C ′2

1 (µ)

]
aeiω

≈ 0.75 × aeiω . (90)

The combination of Wilson coefficients in this expressions
is essentially renormalization-scale-independent and
changes only by O(1%) when evolving from µ = MW down
to µ = mb. Employing Rb = 0.36 and the leading-order
Wilson coefficients

C1(mb) = −0.308 , C2(mb) = 1.144 ,
C9(mb)/α = −1.280 , C10(mb)/α = 0.328 (91)

obtained for ΛMS = 225 MeV, we get the numerical value
of 0.75 in (90), which we will apply throughout this sec-
tion. The use of next-to-leading order Wilson coefficients
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would change this result by only a few per cent. In view
of the approximations made to derive (90) – neglect of
contributions from Q7, Q8 and electroweak penguins with
internal charm quarks – it is therefore appropriate to use
leading-order Wilson coefficients.

The “factorization” approach (corresponding to B(µF)
= 1 in (82), where µF is the “factorization scale”) gives
on the other hand

ε

r
ei(∆−δ)

∣∣∣
fact

= 0.06 , (92)

which is smaller than (90) for aeiω = 0.25 (corresponding
to B(mb) ≈ 2/3) by a factor of 3. For r|fact = 0.16 (see
(29)), we would have ε|fact = 0.01, which is in accordance
with the estimate given in [8].

The expression (90) for the electroweak penguin contri-
bution to the B → πK amplitude relations (18) and (19)
shows that the usual terminology of “colour-suppressed”
electroweak penguins in this context is justified, since Pew
is proportional to the generalized “colour factor” aeff

2 .

5.2 The decay B± → π±π0: a first step towards
constraining the electroweak penguin uncertainty

As we have noted above, a comparison of colour-suppressed
and colour-allowed B → D(∗)π(ρ) decays shows that the
corresponding value of a2/a1 is positive and of O(0.25).
In the case of B-meson decays into πK or π π final states,
the situation concerning “colour-suppression” may, how-
ever, be quite different. At present there are unfortunately
no experimental data available to investigate this issue. A
first step towards achieving this goal, thereby obtaining
insights into the importance of the colour-suppressed elec-
troweak penguin amplitude Pew in (19), is provided by the
b̄ → ū u d̄ decay B+ → π+π0. This mode receives only tiny
electroweak penguin contributions [20]. Moreover, QCD
penguins do not contribute because of the SU(2) isospin
symmetry, so that the decay amplitude takes the simple
form

A(B+ → π+π0) = − 1√
2

[
T (d) + C(d)

]
(93)

= − eiγ
√

2

[
|T (d)|eiδ(d)

T + |C(d)|eiδ(d)
C

]
,

where T (d) and C(d) are usually referred to as colour-
allowed and colour-suppressed “tree” amplitudes. Using
the SU(3) flavour symmetry, we have

|T (d)| =
fπ

λ fK
λ4ARb |T̃ | , (94)

where T̃ has been introduced in (20), and fπ and fK de-
note the pion and kaon decay constants, respectively, tak-
ing into account factorizable SU(3) breaking. Introducing

aππei ωππ ≡ C(d)

T (d) , (95)

we find

1 + 2aππ cosωππ + a2
ππ

=
(

1
r̃

λfK

fπ

)2 2BR(B± → π±π0)
BR(B± → π±K)

(96)

and get a lower bound on aππ:

aππ ≥
∣∣∣∣∣1 − 1

r̃

λfK

fπ

√
2BR(B± → π±π0)
BR(B± → π±K)

∣∣∣∣∣ , (97)

and an upper limit for | sinωππ|:

| sinωππ| ≤ 1
r̃

λfK

fπ

√
2BR(B± → π±π0)
BR(B± → π±K)

, (98)

where r̃ corresponds to T̃ and has been defined in (47).
At present there is only an upper bound on the combined
branching ratio for B± → π±π0 available from CLEO [7],
which is given by BR(B± → π±π0) < 2.0 × 10−5 and
is unfortunately too weak to constrain aππ and ωππ in a
meaningful way.

Making use once more of the SU(3) flavour symmetry,
we get (see (100) on top of next page) with aππ

2 /aππ
1 =

aππeiωππ . This equation can easily be rewritten as

aeiω ≈
(

1 + ares
2 /aππ

2 Mres

1 + Mres

)
aππ eiωππ , (101)

where we have expressed the terms in the denominator
and numerator of (100) related to rescattering processes
as aππ

1 Mres and ares
2 Mres, respectively. In general these

rescattering contributions preclude a relation of aππeiωππ

to aeiω. However, the rescattering contributions from the
Qu,d

1 current–current operators are disfavoured with re-
spect to those from Qu,d

2 because of their colour structure.
This feature is described by the colour-suppression factor
ares
2 in (101). If this quantity should have the same order of

magnitude as aππ
2 , we would have aeiω ≈ aππeiωππ not only

in the case of tiny rescattering effects, i.e. |Mres| � 1, but
also for large rescattering contributions. It is interesting to
note that we would have aeiω ≈ C1(mb)/C2(mb) ≈ − 0.25,
if the rescattering processes from Qu,d

2 should play a dom-
inant role.

Combining these considerations, we conclude that
BR(B± → π±π0) is interesting to obtain a lower bound on
the electroweak penguin contributions (see (90) and (97)),
or to eliminate either ω or a (see (96)). This strategy –
using ironically B+ → π+π0, a decay where electroweak
penguins play a very minor role – can be considered as
a first step towards constraining the electroweak penguin
amplitude Pew in the B → πK relations (18) and (19).
Its theoretical accuracy is limited by SU(3)-breaking cor-
rections, which may be significant in the case of colour-
suppressed topologies, and by rescattering effects. In the
numerical examples given in the following subsection, we
assume a = O(0.25), i.e. that the B → D(∗)π(ρ) and
B → J/ψK(∗) measurements available at present [31] in-
form us also about the intrinsic “strength” of colour sup-
pression in B → πK decays, and keep ω as a free param-
eter.
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aeiω ≈
aππ
2 +

[
2∑

k=1
Ck(µ)

{〈K+π−|Qu
3−k(µ)|B0

d〉P − 〈K+π−|Qd
3−k(µ)|B0

d〉}] /〈K+π−|Qu
2 |B0

d〉factT

aππ
1 +

[
2∑

k=1
Ck(µ)

{〈K+π−|Qu
k(µ)|B0

d〉P − 〈K+π−|Qd
k(µ)|B0

d〉}] /〈K+π−|Qu
2 |B0

d〉factT

(100)

5.3 A closer look at electroweak penguin effects
in strategies to constrain and determine γ

Since (90) implies a correlation between ε and r described
by

ε = qr , ∆ = δ + ω , (102)

where q ≈ 0.75×a, (30) is modified. Using (102) to replace
ε and ∆ in (25), we get

R = 1 − 2r
w

(
h̃ cos δ + k̃ sin δ

)
+ v2r2 , (103)

with
v =

√
1 − 2q cosω cos γ + q2 (104)

and

h̃ = cos γ + ρ cos θ − q [cosω + ρ cos(θ − ω) cos γ] (105)

k̃ = ρ sin θ + q [sinω − ρ sin(θ − ω) cos γ] . (106)

If we keep both r and the strong phase δ as free parameters
in (103), we find that R takes the following minimal value:

Rmin = (107)[
1 + 2qρ cos(θ + ω) + q2ρ2

(1 − 2q cosω cos γ + q2) (1 + 2ρ cos θ cos γ + ρ2)

]
sin2 γ ,

which simplifies to Rmin = (sin2 γ)/(1−2q cosω cos γ+q2)
for ρ = 0, i.e. in the case of neglected rescattering effects.
In Fig. 15 we have illustrated the latter expression for var-
ious values of a. The curves shifted to the left correspond
to ω = 0◦, while those shifted to the right correspond to
ω = 180◦ and represent the maximal electroweak penguin
effects for a given value of a. For |ω| = 90◦, these effects
are minimal and only of second order in a.

As was pointed out in Subsect. 3.1, the strong phase
δ in (103) can be eliminated with the help of the pseudo-
asymmetry A0. The modification of (31) through (102) is
as follows:

Ã = B̃ sin δ − C̃ cos δ , (108)

where

Ã =
w

r

[
A0 −A+

2 sin γ
+ qr2 sinω

]
, B̃ = 1 + qρ cos(θ − ω)

C̃ = qρ sin(θ − ω) (109)

and gives

R = L+M r2 ∓
√

−N r4 + 2P r2 −Q , (110)
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Fig. 15. The effect of electroweak penguins on Rmin described
by (107). The curves for a given value of a (except the dot-
dashed line) correspond to ω ∈ {0◦, 180◦}

with

L = 1 −
(
A0 −A+

2 sin γ

)
D̃ , M = v2 − D̃q sinω

N = (Ẽq sinω)2

P =

[
B̃2 + C̃2

2w2 −
(
A0 −A+

2 sin γ

)
q sinω

]
Ẽ2

Q =
[(

A0 −A+

2 sin γ

)
Ẽ

]2
(111)

and

D̃ = 2

(
k̃B̃ − h̃C̃

B̃2 + C̃2

)
, Ẽ = 2

(
h̃B̃ + k̃C̃

B̃2 + C̃2

)
. (112)

If we keep r as a free parameter in (110), we find that R
takes minimal and maximal values, which are given by

Rmax
min =

1
N

[
LN +MP ±

√
(P 2 −NQ)(M2 +N)

]
(113)

and correspond to

r = rmax
min ≡

√
P

N
± M

N

√
P 2 −NQ

M2 +N
. (114)

Moreover we get the following expression for r:

r = (115)√
r2
ext+

(R−Rext)M±
√

(R−Rext)[2MP+(2L−R−Rext)N]

M2+N
,
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where “ext” stands for either “min” or “max”, i.e. denotes
the extremal values. It is possible to rewrite (113) in a
more transparent way as follows:

Rmax
min =

1
2(wq sinω)2

(116)

×
[
v2y ±

√
(y2 − z2)(v4 − 4q2 sin2 ω sin2 γ)

]
,

where

y = 1 + 2qρ cos(θ + ω) + q2ρ2 − z

z =
(
w2A0

sin γ

)
q sinω . (117)

Concerning phenomenological applications, only the min-
imal value of R plays an important role, since Rmax turns
out to be much larger than 1.

In the case of two interesting special cases, (116) sim-
plifies considerably. First, for A0 = 0 we have

Rmin|A0=0 (118)

=
2

v2w2


 1 + 2qρ cos(θ + ω) + q2ρ2

1 +
√

1 − (2q sinω sin γ/v2)2


 sin2 γ ,

which agrees with (107) for q sinω = 0, and gives larger
values for Rmin, i.e. stronger bounds on γ, otherwise. An-
other important case is q sinω = 0, corresponding to ω ∈
{0◦, 180◦} for q 6= 0. In this case, Rmin takes the same
form as (40). The expression for κ is, however, very differ-
ent (and cosω = ±1):

κ (119)

=
1 + 2qρ cos θ cosω + q2ρ2

(1 − 2q cosω cos γ + q2)(1 + 2ρ cos θ cos γ + ρ2)
.

In Fig. 16 we illustrate the effect of electroweak pen-
guins described by (90) on Rmin for A0 = + 0.2 by using
(116) for various values of a and neglected rescattering
effects, i.e. ρ = 0. The curves shifted to the left corre-
spond to ω = 0◦, those shifted to the right to ω = 180◦.
In Figs. 17 and 18 we show the corresponding effects in
the γ–r plane for ω = 0◦ and ±90◦, respectively. In the
latter case, we have chosen a = 0.3. The contours shown
in these figures have been calculated by using (115). The
case corresponding to ω = 180◦ can easily be obtained
from Fig. 17 by replacing γ → 180◦ − γ.

6 Combined rescattering
and electroweak penguin effects

To end the discussion of rescattering and electroweak pen-
guin effects in strategies to constrain and determine the
CKM angle γ from B± → π±K and Bd → π∓K± decays,
let us illustrate the situation concerning Rmin in the case
of measured asymmetries |A0| = 0.2 and |A+| = 0.1. The
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Fig. 16. The effect of electroweak penguins described by (90)
on Rmin for A0 = +0.2. Except for the solid and dot-dashed
lines, the curves correspond to ω ∈ {0◦, 180◦}
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Fig. 17. The shift of the contours in the γ–r plane correspond-
ing to R = 0.65, |A0| = 0.2 through electroweak penguins de-
scribed by (90) for ω = 0◦ and ρ = 0

latter CP asymmetry allows us to obtain a lower bound on
ρ and to eliminate the CP-conserving strong phase θ for a
given value of ρ, as we discussed in Sect. 4. In Figs. 19 and
20 we have chosen ρ = 0.15. The electroweak penguin ef-
fects are described in these figures by a = 0.25 and various
values of the strong phase ω. We see that an important
difference arises between ω = 0◦ and ω = 180◦.

In the case of large rescattering effects, for example
ρ = 0.15, as shown in Figs. 19 and 20, the branching
ratio for the decay B+ → K+K0 may be enhanced by
one order of magnitude from its “short-distance” value
O(10−6) to the 10−5 level, which should be accessible at
future B factories. Using the SU(3) flavour symmetry to
relate this mode to B+ → π+K0, the rescattering effects
affecting Rmin can be controlled completely, as we saw
in Subsect. 4.3. In particular, following this strategy, no
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Fig. 18. The shift of the contours in the γ–r plane corre-
sponding to R = 0.65, A0 = 0.2 through electroweak penguins
described by (90) for a = 0.3 and ρ = 0
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Fig. 19. Electroweak penguin and rescattering effects for Rmin

in the case of |A0| = 0.2 and |A+| = 0.1 (ω ∈ {0◦, 180◦})

knowledge about ρ would be needed as it was in Figs. 19
and 20.

Although we could derive a transparent expression (see
(90)) to describe the electroweak penguin contributions af-
fecting the isospin relations (18) and (19) between B+ →
π+K0 and B0

d → π−K+, it is more difficult to control
them using experimental data if rescattering effects are
large. A first step in this direction is provided by the
branching ratio for B+ → π+π0, as we have pointed out
in Subsect. 5.2. In Figs. 19 and 20 we have assumed that
a takes a value of 0.25, which is of the same order of
magnitude as the strength of colour suppression in B →
D(∗)π(ρ) and B → J/ψK(∗) decays, and have kept ω as
a free CP-conserving strong phase.

At this point we could give more examples to illus-
trate the possible impact of combined rescattering and
electroweak penguin effects on information on the CKM
angle γ obtained from B → πK decays. Since it is now
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Fig. 20. Electroweak penguin and rescattering effects for Rmin

in the case of A0 = 0.2 and |A+| = 0.1 (ω = ±90◦)

an easy exercise to play with the corresponding formulae,
we will not consider other scenarios in this paper. Hope-
fully, improved experimental data will be available in the
near future, allowing us to go beyond these selected exam-
ples and to perform a solid analysis of the corresponding
decays.

7 Conclusions

In summary, we have presented a general parametrization
of the B+ → π+K0 and B0

d → π−K+ decay amplitudes
within the framework of the Standard Model in terms of
“physical quantities”, taking into account both rescatter-
ing and electroweak penguin effects. These decays offer
an experimentally feasible way to obtain direct informa-
tion on the CKM angle γ at planned B factories, which
will start operating in the near future, and are therefore
of particular phenomenological interest. In this respect,
the ratio R of their combined branching ratios and the
pseudo-asymmetry A0 play the key role. As soon as these
observables, i.e. the branching ratios for B+ → π+K0,
B0

d → π−K+ and their charge-conjugates, have been mea-
sured, contours in the γ–r plane can be calculated with
the help of the formulae derived in this paper. These con-
tours imply allowed ranges for both r and γ. For A0 6= 0,
values of γ within intervals around 0◦ and 180◦ can be
excluded, and if R should turn out to be smaller than 1,
also values around 90◦ can be ruled out. In particular the
latter case is of particular interest, since the corresponding
range for γ would then be complementary to its presently
allowed range obtained from the usual fits of the unitarity
triangle. If r could be fixed by using an additional input,
γ could not only be constrained, but determined up to a
four-fold ambiguity.

In order to derive these bounds and to obtain the
contours in the γ–r plane, isospin symmetry has been
used, which is certainly an excellent working assumption.
The theoretical cleanliness is, however, limited by certain
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rescattering and electroweak penguin effects. Our formu-
lae include these contributions in a completely general
way, and therefore allow us to investigate the sensitivity
to these effects and to take them into account by using
additional experimental information.

The rescattering processes may lead to sizeable CP
violation in B+ → π+K0, possibly as large as O(10%).
We have pointed out that such CP asymmetries would
provide a lower bound on ρ, i.e. a first constraint on the
strength of the rescattering effects, and are useful to in-
clude these final-state interactions in the bounds on γ. In
order to control the rescattering effects in these bounds,
B+ → K+K0 may be a “gold-plated” mode. It can be re-
lated to B+ → π+K0 with the help of the SU(3) flavour
symmetry and provides sufficient information not just to
constrain, but to take into account the final-state inter-
action effects in the bounds on γ completely. As a by-
product, this strategy gives moreover an allowed region
for ρ, and excludes values of γ within ranges around 0◦
and 180◦. It is interesting to note that SU(3) breaking
enters in this approach only at the “next-to-leading or-
der” level, as it represents a correction to the correction
to the bounds on γ arising from rescattering processes.
Moreover this strategy works also if the CP asymmetry
in B+ → π+K0 should turn out to be very small. In this
case there may also be large rescattering effects, which
would then not be signalled by sizeable CP violation in
this channel.

At first sight, an experimental study of B+ → K+K0

appears to be challenging, since model estimates performed
at the perturbative quark level give a combined branching
ratio BR(B± → K±K) = O(10−6), which is one order of
magnitude below the present upper limit obtained by the
CLEO collaboration. However, as we have pointed out in
this paper, rescattering processes may well enhance this
branching ratio by O(10), so that it may actually be much
closer to the CLEO limit than näıvely expected. Conse-
quently, in the case of large rescattering contributions, i.e.
when we have to take them into account in the bounds
on γ, the branching ratio for the decay allowing us to ac-
complish this task, B+ → K+K0, may be significantly
enhanced through these very rescattering effects, so that
this strategy should be feasible at future B factories.

Although the decay B+ → K+K0 allows us to de-
termine the shift of the contours in the γ–r plane aris-
ing from rescattering processes, it does not allow us to
take into account these effects also in the determination
of γ, requiring some knowledge on r, in contrast to the
γ bounds. This quantity is not just the ratio of a “tree”
to a “penguin” amplitude, which is the usual terminology
in the literature, but has a rather complex structure and
may be considerably affected by final-state interactions.
Consequently, in the case of large rescattering effects, r is
expected to be shifted significantly from its “factorized”
value and its theoretical uncertainty is very hard to con-
trol. Interestingly, the small present central value R = 0.65
implies a range for r that is at the edge of compatibility
with these “factorized” results and favours larger values
of r. This feature may already give us a first hint that

rescattering effects play in fact an important role, and it
may well be that future experimental results for R will
stabilize at the 0.65 level. In this case, a measurement of
BR(B± → K±K) = O(10−5) and large CP violation in
this channel would not be a surprise. In the recent lit-
erature it has been claimed by some authors that such
rescattering processes would spoil the bounds on γ. It is
interesting to note that these effects may actually be re-
sponsible for a strong realization of these bounds, i.e. for
a small value of R, thereby making them phenomenologi-
cally relevant.

Concerning electroweak penguins, model calculations
using “factorization” to deal with hadronic matrix ele-
ments typically give contributions at the 1% level in the
case of B+ → π+K0 and B0

d → π−K+ decays, where elec-
troweak penguins contribute only in “colour-suppressed”
form. In this paper, we have presented an improved the-
oretical description of the electroweak penguin amplitude
affecting the isospin relations between the decay ampli-
tudes of these modes, and have derived a transparent ex-
pression, clarifying also the notion of “colour-suppressed”
electroweak penguins. Our approach does not use ques-
tionable assumptions, such as factorization, and makes use
of only the general structure of the electroweak penguin
operators and of the isospin symmetry of strong interac-
tions to relate the hadronic matrix elements corresponding
to B+ → π+K0 and B0

d → π−K+ transitions. We have
seen that the importance of electroweak penguins is closely
related to the ratio of certain “effective” colour factors
aeff
2 /aeff

1 . Using |aeff
2 |/|aeff

1 | = 0.25 gives an enhancement
of the relevant electroweak penguin amplitude by a fac-
tor of 3 with respect to the factorized result. A first step
towards constraining this electroweak penguin amplitude
experimentally is provided by the mode B+ → π+π0. Our
formulae include the electroweak penguin contributions in
a completely general way, allowing us to take them into
account once we have a better understanding of “colour-
suppression” and rescattering effects in B → πK decays.

Although the decays B+ → π+K0, B0
d → π−K+ and

their charge conjugates will probably not allow a precision
measurement of γ, they are expected to provide a very
fertile ground to constrain this CKM angle. An accurate
measurement of these modes, as well as of B± → K±K,
is therefore an important goal of the future B factories.
The corresponding experimental results will certainly be
very exciting.
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